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SUMMARY

Knowledge of the three-dimensi0nal world is es-
sential for many guidance and navigation applications.

A sequence of images from an electro-optical sensor

can be processed using optical flow algorithms to pro-

vide a sparse set of ranges as a function of azimuth and

elevation. A natural way to enhance the range map
is by interpolation. However, this should be under-

taken with care since interpolation assumes continuity

of range. The range is continuous in certain parts of

the image and can jump at object boundaries. In such

situations, the ability to detect homogeneous object re-

recently that several techniques for ranging, using pas-

sive sensors such as electro-optic sensors, have ap-
peared in the literature (refs. 3-9). It has been shown in

references 3-5 that both stereo and motion algorithms

provide a sparse set of ranges to discrete points in the

image sequence as a function of azimuth and elevation.

The problem of modeling dense range images, gener-
ated by active sensors, has been studied by several

authors (refs. 2 and 10-12). This is usually achieved

by fitting surfaces to the range data using polynomials,

splines, and Delaunay triangles. In reference 12 the

authors have also applied a surface fitting approach

to depth data generated using a field based approach

gions by scene segmentation can be used to determine (ref. 9). The surface consistency constraint smoothes
the depth values into regions where depth is unknown.regions in the range map that can be enhanced by inter-
From the examples in reference 12, it may be seenpolation. This paper explores the use of scalar features

derived from the spatial gray-level dependence rnath_x

for texture segmentation. Thresh01ding of histograms

of scalar texture features is done for several images

to select scalar features which result in a meaningful
segmentation of the images. Next, the selected scalar
features are used with a neural net to automate the

segmentation procedure. Back-propagation is used to

train the feed forward neural network. The generalizA-

tion of the network approach to subsequent images in
the sequence is examined. It is shown that the use of

multiple scalar features as input to the neural network

result in a superior segmentation when compared with

a single scalar feature. It is also shown that the scalar

features, which are not useful individually, result in a
good segmentation when used together. The method-

ology is applied to both indoor and outdoor images.

1 INTRODUCTION

Automatic guidance for aerospace vehicles can be

accomplished in two stages. The first stage specifies

a nominal vehicle path based on mission goals and

a database containing digitized terrain geometry. The

second stage specifies a modified path by constructing
a three-dimensional model of the environment near the

vehicle. The model of the environment near the vehicle

is based on locally sensed information. For sensing,

both active and passive sensors can be used.

Traditionally, the problem of ranging, using active

sensors, has been studied extensively (ref. 1). These

algorithms yield dense range maps (ref. 2). It is only

that surface fitting approaches do not work well on

sparse range maps. The main reason for this is that

the geometric relationships between the points of the

range map are lost due to the discreteness of the range
map. One of the ways of recovering this information

is by application of problem-dependent constraints to

cluster discrete ranges into few groups (ref. 13). The

techniques for dense range maps may then be applied

to each group to make the variation within the group
continuous. The geometric relationships between the

points may also be recovered by detecting the relation-

ships in the image plane. One such way is to detect

homogeneous regions by scene segmentation.

In the literature several methods have been pro-

posed for scene segmentation. For example, the meth-

ods described in references 2 and 14-24, represent a

few of the diverse approaches to scene segmentation.
Some of these methods use texture features (refs. 19-

24) for scene segmentation.

This paper reviews some of the texture based meth-

ods for scene segmentation and investigates the use of

scalar texture features (ref. 22) for image segmenta-

tion. The selection of an appropriate set of texture

features is the first step in segmentation; and towards
this end, we examine the segmentation capability of

individual features using thresholding techniques. The

thresholding technique, while useful for individual fea-

tures, is difficult to automate for multiple features. We

approach the problem of segmenting the image using
multiple features by training a feed-forward neural net-

work (NN). The NN is trained using the method of

back-propagation. Initially, the NN is trained with a
single feature to ensure that its performance is compa-

rable to that achieved by thresholding. It is shown that



theperformanceof theNN usingseveralfeaturesissu-
periorto theNN usingasinglefeature.Wealsoexam-
inethecapabilityof theNN to extrapolatebytraining
it ononeimageandusingit to segmentanotherimage.
Wepresentourresultsbyapplyingthemtobothindoor
andoutdoorimages.TheNN approachto segmenta-
tion, thoughnot completelysatisfactory,showsgreat
promise.Wediscusshowtheresultscanbeimproved
further.Thepaperisorganizedasfollows:Insection2,
differentwaysof characterizingthetexturalproperties
aredescribed.In section3, usefulnessof eachscalar
featureis exploredby evaluationof thesegmentation
achievedbythresholdingof thehistogramof thescalar
feature.Neuralnetworktrainingandclassificationwith
a singlescalarfeatureis describedin section4. Next,
trainingandclassificationperformanceof afive input
neuralnetusingthefive scalarfeatures,foundto be
usefulindividually,is presented.Also, in section4,
resultsarepresentedfor a five inputneuralnetusing
a differentset of scalarfeatures.Someconclusions
aredrawnin section5. Eachscalartexturefeatureis
definedin theappendixfor completeness.

WethankHienT. Tranof AnalyticalMechanics
Associates,Inc., for implementingthecodeandgen-
eratingthe results.WealsothankValerieContiand
R. Manmathaof the ComputerScienceDepartment,
Universityof MassachusettsatAmherst,for providing
theimagein figure33 andR. E. Suorsaof theAir-
craftGuidanceandNavigationbranchatNASA Ames
Research Center for providing figure 37.

2 TEXTURE

Gray scale images are characterized by pixels of

varying intensity. Any image can be described by the
nature of the distribution of the gray levels across the

image. The properties of this distribution are usually

described in terms of the first, second, and higher order

statistics. First order statistics describe the pixel popu-

lation in the image without regard to its spatial distri-

bution, while the second order statistics take the spatial

distribution into account. Two approaches are used to

characterize this spatial distribution: (a) a stochastic

model-based approach and (b) a data-driven approach.

The model-based approach assumes that the image can
be modeled in terms of two-dimensional random fields

or time series. Several stochastic models are discussed

in references 25 and 26).

The data-driven, or non-parametric approach, is

based on characterizing the two-dimensional intensity

distribution by different types and features of second

order statistics. The conditional probability density

function f(i, j]d, O) represents the probability that two pix-

els separated by an interpixel distance d and orientation
0 have intensities i and j. An estimate of the con-

ditional probability density function, e(i,jld, 0), is re-

ferred to as the gray-level co-occurrance matrix (GLCM)
or as the spatial gray-level dependence matrix (SGLDM).

SGLDM has been most widely used for classification

of textures (refs. 19-20 and 22-24). SGLDM can be

obtained by computing the two-dimensional histogram

of the frequency of the joint occurrences of two pixels

with a fixed displacement and orientation with respect
to each other having intensities i and j respectively. A

rotationally invariant SGLDM is computed by averag-

ing the individual SGLDM for the angular directions.
For texture classification, either matrix features

or scalar features are used. Many different approaches

are available for texture classification using matrix fea-
tures. Threshold selection based on the SGLDM is de-

scribed in reference 19. In reference 20 the SGLDMs

of four neighbors in the quad-tree are compared with

a threshold for merging or splitting operations. Re-
sults using this technique are also presented in refer-

ence 21. A technique for image segmentation by de-

tecting clusters in the SGLDM, which correspond to

the regions and boundaries in the image, is described
in reference 24. A maximum likelihood texture clas-

sifter using matrix and scalar features is examined in

reference 23. In reference 27 segmentation is done

by thresholding where the thresholds are selected by

projecting the off-diagonal elements of the SGLDM

onto the diagonal and treating the resulting vector as

a histogram. Although, these methods are useful for
segmentation, their storage requirements are high due

to the use of matrix features. For example, 256 × 256
locations are needed to store a matrix feature for an im-

age containing 256 gray-levels. These methods are also

computationally intensive. The storage requirement

and computational speed are the motivations for con-

sidering scalar features for image segmentation. How-

ever, it should be noted that many of the scalar features

derived from the matrix features may not contain all

the important texture information contained in the ma-

trix features (ref. 28).
Several scalar features are derivable from the ma-

trix features. For example, 14 scalar texture features

based on the SGLDM are presented in reference 22.



Foreachof thescalarfeaturestheirmeansandvari-
ance,computedby usingtheSGLDMscorresponding
to thefourdirections,maybeusedfor textureclassi-
fication.Somescalarfeaturesderivedfrom SGLDM,
Fourierpowerspectrum,Grayleveldifferencestatis-
tics,andGraylevelrun lengthstatisticsaredescribed
in references28 and29. Scalartexturefeaturesde-
rivedfrom the SGLDMmayalsobecomputedfrom
sumanddifferencehistograms(ref.30). Comparedto
computingthefull SGLDM,sumanddifferencehis-
togramsarefastcomputationallyandrequiremuchless
storage.Exceptfor twoscalarfeatures,energyanden-
tropy,all the scalarfeaturescanbeobtainedexactly
byusingthesumanddifferencehistograms.Manyof
themethodssuchasreferences20and23canbeused
for classificationusingscalarfeatures.Severalother
methodssuchaspiecewiselineardiscriminantfunction
method,min-maxdecisionrule methodreference22,
Fisherlineardiscriminanttechnique(ref. 29)canalso
beusedfor classificationusingscalarfeatures.

Someof thescalarfeaturesrelateto specificchar-
acteristicsin theimagesuchas,homogeneity,contrast,
and organizedstructure.Otherfeaturescharacterize
thecomplexity.Eventhougheachscalarfeaturecon-
tainstexturalinformation,it is hardto identifywhich
specifictexturalcharacteristicis representedby which
feature. In this paper,we examinetheclassification
ability of eachscalarfeature,derivedfrom SGLDM,
basedon segmentationresultsof a laboratoryimage
sequenceanda naturalscene.In mostof theearlier
workbothwith scalarandmatrixfeatures,synthetic
textures,aerialimages,andsatelliteimageshavebeen
used.Oneof theobjectivesofthispaperis toapplythe
scalarfeaturesto non-orthographicimageswith slant
illumination.In thenextsection,wedescribesegmen-
tationresultsobtainedby thresholdingthehistograms
of scalarfeatures.Theseresultsshowwhichof the
scalarfeaturesaresuccessfulin classifyingtheimage
pixelsinto thedesiredcategories.

contentin the scalarfeatures,sumaverage(f6), sum
variance(f7), andsumentropy(f8), is sameasthat
in differenceaverage(f12),differencevariance(fl0),
anddifferenceentropy(fll), respectively.Therefore,
wewill notconsiderf6, f7, andf8 in thisstudy.Scalar
featuresateverypixelof theimage,shownin figure1,
arecomputedusinga 17x 17windowcenteredatthe
pixel. Theimagein figure1 is thefirst in a seriesof
80 images.It consistsof differentobjectslike pen-
cils, metalbracket,woodenblockon a largeoptical
table,anda texturedwall in thebackground.If apar-
ticular scalarfeatureis a discriminant,it shouldbe
possibleto thresholdthehistogramof thescalarfea-
tureinto regionsthatcorrespondto thedesiredimage
segmentation.To investigatethis, histogramsfor the
scalarfeaturesarepresentedfor thewholeimageand
for rectangularregionsshownin figure2. Thelegends
W,T,andO in figure2 correspondto threecategories:
wail, table,andobjects.Thehistogramof fl for the
wholeimageisshownin figure3andfor therectangu-
larregionsfromthewall,table,andobjectsisshownin
figure4. In figure4thelegendsW,T,andOcorrespond
to theregionsshownin figure2. Thefl histogramin
figure3 canbeseparatedinto threeregionsgivenby
thethresholdsfl < 0.008, 0.008 < fl < 0.03, and

fl > 0.03. The histograms in figure 4 suggest that

the image can be segmented into four categories us-

ing the thresholds: fl < 0.003, 0.003 < fl < 0.008,

3 FEATURE SELECTION

In this section, we present image segmentation re-

sults using the following scalar features: energf(i_ ,)7---
contrast (t2), correlation (f3), standard deviation (f4),

local homogeneity (f5), entropy (f9), difference vari-

ance (fl0), difference entropy (fll), difference aver'

age (f12), and mean (f13). Definitions of the various

scalar features are given in appendix I. The information
Figure 1. First lab image.



Figure2. Regionsin thefirst labimage.

0.008< fl < 0.03, and fl > 0.03. The four thresh-

olds result in the image segmentation shown in figure 5.

In this case the lowest and the highest thresholds corre-

spond to the object category. Image regions classified

by the highest threshold are shown in white. In the

absence of the truth data in figure 4, the image can
only be segmented into three groups based on the fl
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Figure 4. F1 histograms for the wall, table, and object

regions in the first lab image.

histogram of the whole image shown in figure 3. This

would result in most of the object regions being classi-

fied as table regions. Although fl feature can be used
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Figure 3. F1 histogram for the first lab image.

Figure 5. First lab image segmentation using fl

histogram.
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for classifyingthe imagein figure 1 into threecate-
gories,it is moresuitablefor a binaryclassification
intowall andnot-wallcategories.

Thef2 histogramfor thewholeimageisshownin
figure6 andthehistogramsfor thewall,table,andob-
jectscategoriesareshownin figure7. Thehistograms
in figures6 and7 suggestthesegmentationthresholds:
f2 < 4, 4 < f2 < 85, and f2 _> 85. Image segmenta-
tion with these thresholds is shown in figure 8. From

the segmentation in figure 8, it may be seen that f2

correctly segments the image into the wall, table, and

object categories.

Figure 9 shows the f3 histogram for the whole im-

age. The f3 histograms for the wall, table, and object
categories are presented in figure 10. From the his-

tograms in figure 10, it may be seen that the wall and

table categories are not separable. The three thresholds
which partition the histogram in figure 9 are f3 < 0.5,

0.5 _< f3 < 0.95, and f3 _> 0.95. This results in the

segmentation shown in figure 11. From the segmen-

tation in figure 11, it may be seen that f3 is useful

for binary segmentation into object and not-object cat-

egories. The first threshold results in few pixels close

to the right bottom comer (shown in white) being clas-
sified into a separate set.

The f4 histogram for the whole image is shown

in figure 12 and the wall, table, and object histograms

are given in figure 13. These histograms suggest four

thresholds: f4 < 1, 1 < f4 < 4.5, 4.5 < f4 < 16,
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Figure 7. F2 histograms for the wall, table, and object

regions in the first lab image.

and f4 > 16. The segmented image corresponding to

the four thresholds is given in figure 14. The segmen-
tation in figure 14 is very similar to that in figure 8.

_ ................ _................ _................ _...............

_. i i i

O_i_ : : :

0 I_ID 100 1_0 I_00

Figure 6. F2 histogram for the first lab image.

Figure 8. First lab image segmentation using f2
histogram.
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Figure 9. F3 histogram for the first lab image.

The first threshold results in some of the object pix-

els (shown in white) being classified into a different

category.
In the manner described above, four thresholds

obtained by the f5 histograms, in figures 15 and 16,

result in the image segmentation in figure 17. The f5

Figure 11. First lab image segmentation using f3
histogram.

histogram for the whole image is shown in figure 15.

The f5 histograms corresponding to the wall, table, and

object regions are shown in figure 16. Segmentation

thresholds obtained from these histograms are f5 <
0.2, 0.2 < S5 < 0.44, 0.44 < f5 < 0.64, and f5 >
0.64.
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Figure 10. F3 histograms for the wall, table, and object

regions in the first lab image.
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Figure 13. F4 histograms for the wall, table, and object

regions in the first lab image.

The white regions in figure 17 correspond to the

first threshold. The segmentation in figure 17 shows

that f5 is useful for binary classification into wall and

not-wall categories.
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Figure 15. F5 histogram for the first lab image.
/

Histogram using f9 for the whole image is shown

in figure 18. The f9 histograms for the wall, table,

and object categories are shown in figure 19. Based

on the histograms, the following thresholds, f9 < 1.6,

1.6 < f9 < 2.2, 2.2 < f9 < 3, and f9 > 3, result in

the segmentation in figure 20. In figure 20, the white

Figure 14. First lab image segmentation using f4

histogram.
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Figure 16. F5 histograms for the wall, table, and object

regions in the first lab image.



Figure 17. First lab image segmentation using f5

histogram.
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Figure 19. F9 histograms for the wall, table, and object

regions in the first lab image.

regions correspond to the first threshold. From the

segmentation results it may be seen that most of the

wall, table, and object pixels are classified correctly by
the f9 feature.

In figure 21 the fl0 histogram for the whole image
is given, and in figure 22 the fl0 histograms for the

wall, table, and objects are given. The segmentation

resulting from the histogram thresholds, fl0 < 0.6,

0.6 < fl0 < 1.3, 1.3 < fl0 < 6, and fl0 > 6, is

given in figure 23. The segmentation result in figure 23
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Figure 18. F9 histogram for the first lab image.

O.O I .O Figure 20. First lab image segmentation using t9

histogram.
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Figure 21. F10 histogram for the first lab image.

is similar to that in figure 14. Image pixels classified
by the first threshold are shown in white.

Thresholds derived from the fl 1 histograms pre-

sented in figures 24 and 25 are fll < 0.5, 0.5 <
fll < 0.7, 0.7 < fll < 1, and fll > 1. Here, the

Figure 23. First lab image segmentation using fl0
histogram.

fl 1 histogram for the complete image is shown in fig-
ure 24 and the wall, table, and object histograms are

shown in figure 25. Based on the fl 1 thresholds, the

image segmentation is presented in figure 26. Regions

shown in white in figure 26 correspond to the first
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Figure 22. F10 histograms for the wall, table, and

object regions in the first lab image.
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Figure 24. Fll histogram for the first lab image.
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Figure 25. Fll histograms for the wall, table, and

object regions in the first lab image.

threshold. The segmentation result is very similar to

that in figure 20.

The f12 histogram for the whole image in fig-

ure 27 and the histograms for wall, table, and ob-

ject categories in figure 28, result in the thresholds

f12 < 0.8, 0.8 _< f12 < 1.5, 1.5 < f12 < 3.8, and

f12 > 3.8. These thresholds lead to the segmenta-

tion in figure 29. This segmentation result is similar

to those in figures 14 and 23. The white regions in
figure 29 correspond to the lowest threshold.

Histograms using fl 3 for the whole image is given

in figure 30. Similar histograms for wall, table, and

object regions are given in figure 31. The following
thresholds, f13 < 38, 38 < f13 < 110, and f13 >

110, partition the image into three groups shown in
figure 32. The first threshold corresponds to the white

region in figure 32. The segmentation in figure 32

suggests that f13 can partition the image into object

and non-object categories. It may be seen that parts of
the table are classified as objects due to the fact that

f13 is directly effected by the scene illumination.

In summary, the following may be said regarding

the classification performance of the 10 scalar features

examined on the image in figure 1: fl, f3, and f5 are

useful for binary segmentation; f2, f4, f9, flO, fl 1, and

fl 2 are useful for segmentation into the desired cate-

gories. The features f4, fl0, and f12 result in similar

segmentations. Also, f9 and fl 1 result in similar seg-
mentations. The scalar feature f13 is tone dependent

and therefore, may not be very useful for images with

gradual tonal variation caused by illumination•
To verify that the scalar features found to be good

discriminants for the laboratory image in figure I are

also good discriminants for other images, we consider

Figure 26. First lab image segmentation using fl 1

histogram.
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Figure 27. F12 histogram for the first lab image.

10



o 0

oo i

© !

'J Oi

--6 0

I

i

I

I

'_ i / :

I I J I I I I I I I I I

5 10 16
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a sequence of 30 images acquired by the Autonomous

Land Vehicle (ALV) in the area surrounding the Martin

OO

0

ldO

I)
H,*

d
It

L

O

Q

0

I I I I 1

80 1_0 180 E:40 800

/'1:_

Figure 30. F13 histogram for the first lab image.

Marietta plant in Denver. The details of the image ac-

quisition method and decription of the motion data as-

sociated with the images are available from the Univer-

sity of Massachussetts (UMASS) at Ahmerst (ref. 31).

Thresholds were obtained for the histograms of scalar

Figure 29. First lab image segmentation using f12
histogram.
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Figure 31. F13 histograms for the wall, table, and

object regions in the first lab image.
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Figure32.Firstlabimagesegmentationusingfl 3
histogram.

featurescomputedontheUMASSimageshownin fig-
ure33. Thethresholdsobtainedfor thevariousscalar
featuresaresummarizedin table1.Here,thelabelsM,
G,andS representthreecategoriesnamely,mountain,
ground,andsky. Fromthetableit maybeseenthat
fl, f4, f5, f9, fl0, fll, andf12 resultin a meaningful

Figure33.UMASSImage.

Table1. Thresholdsfor scalarfeatures(UMASS
image)

Features M G S
fl 0-0.001 0.001-0.005 0.005-0.2

f2 70-300 0-70 0-70
300-15236 300-15236

f3 0.6-1.0 0.6-1.0 0-0.6

f4 10-23 5-10 0-5
23-126

f5 0-0.2 0.2-0.28 0.28-0.38
0.38-1

f9 3.1-3.6 0-1.8 1.8-2.4
2.4-3.1
3.6-4

fl0 4-10 2.2-4 0-2.2
10-106

fl 1 1.2-1.5 0.9-1.2 0-0.9
1.5-1.8

f12 6-I 1.5 3-6 0-3
11.5-65

fl 3 60-100 0-60 0-60
100-255 100-255

segmentationof theimagein figure33into themoun-
tain,ground,andskycategories.Thefeaturef2 sep-
aratesmountainfrom not-mountain,f3 separatessky
from not-sky,andf13 separatesmountainfrom not-
mountain.

Thesegmentationresultingfromthresholdingthe
histogramof f9 featureis shownin figure34. This
resultis representativeof thesegmentationsobtained
by usingfl, f4, f5, f9, fl0, fll, andf12. Binaryseg-
mentationobtainedby usingf2 andt3 areshownin
figures35and36.

Thesetof scalarfeatureswhichresultin anac-
ceptablesegmentationof both, the imagein figure1
andfigure33aref4, f9, fl0, fll, andf12. Theexperi-
encewith thetwoimages,usedin thispaper,indicates
thatit maybepossibleto segmentotherimagesusing

12
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Figure 34. UMASS image segmentation using f9

histogram.

Figure 36. UMASS image segmentation using f3

histogram.

these features individually. So far we have not exam-
ined the classification achievable by using several fea-

tures together. It is quite possible that several features
together may improve the segmentation. We explore

this idea with a neural network, described later. In the

next section we describe a neural network approach
(ref. 32) for supervised classification using single and

multiple scalar features.

4 SEGMENTATION WITH NEURAL

NETWORKS

Figure 35. UMASS image segmentation using f2

histogram.

In the previous section we have established that
the scalar features that show most promise for image

segmentation are f4, f9, fl0, fll, and f12. These five
features may be used individually or together to train

a multilayer neural net (NN) using back propagation

(ref. 32). Figure 37 shows an example of a generic

two layer feed-forward NN. As shown in the figure,

the input nodes are connected to the nodes in the hid-

den layer via weights, biases, summing junctions, and

sigmoids. The nodes in the hidden layer are also con-

nected to the output nodes in a similar way.

In this section we will first illustrate NN training

and classification with a single scalar feature and then
with five scalar features. The reason for using a single
feature is that some of the results are easier to relate

to the thresholds obtained from the histograms of the
scalar features, discussed earlier, and to validate that
the chosen scalar features are texture discriminants.

13
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Figure 37. A two layer feed-forward neural network.

4.1 Training with Single Inputs

A feed-forward multilayer NN with one node in

the input layer, four nodes in the hidden layer and three

nodes in the output layer was used for classification.

The NN was trained with f9 using back propagation.

For training and NN performance evaluation, several

rectangular regions from the wall, table, and objects

were chosen. These regions are shown in figure 2. In

the figure, the labels W, T, and O correspond to wall,

table, and objects. From each of these regions 80 pix-
els were randomly chosen for training of the NN. The

performance of the trained NN for the training samples

is summarized in table 2. The legends W, T, O, and U

Table 2. Training performace using f9 for the first lab
image

W T O U

W 80

T 77 3

O 8O

represent wall, table, objects, and unknown. The table

shows that all the wall and the object samples were

classified correctly. Out of 80 table samples, 77 were

classified correctly and three samples could not be clas-

sified at all. The U (unknown category) is that in which

all three outputs of the NN were below a threshold of

0.6. The three NN outputs for the 240 pixels (80 from

wall, 80 from table, and 80 from objects) are shown

in figure 38. It may be noted that for each pixel all

three outputs have a value and therefore, each curve

consists of 240 points. If a classification threshold of

0.6 is chosen, the thresholds on f9 obtained from fig-

ure 38 are f9 < 1.6, 1.6 < f9 < 2.2, 2.2 < f9 < 3.0,
and f9 > 3.0. It may be seen that these thresholds

are same as those which partition the f9 histogram in

figure 18.
The convergence characteristics of the NN are

shown in figure 39. The 23 weights of the NN con-

verged in 632 cycles. Figure 39 shows the error, E,

and the probability of correct classification, PCC, as a

function of a number of cycles. It may be noted that E
is a feature of the fit error and not classification error.

PCC is defined as the ratio of the number of samples

correctly classified to the number of samples input to
NN.

For evaluation of the performance of the trained

NN for all samples within the rectangular regions, shown

in figure 2, the f9 values for each pixel in the image

in figure 1, were input to the trained NN for classifi-

cation into wall, table, object, or unknown categories.

The resulting segmentation is shown in figure 40. The

white pixels in figure 40 correspond to the unknown

category. It is interesting to note that the white pixels

are usually along the edges separating two categories.

The segmentation result presented here is very simi-
lar to that shown in figure 20 except that many of the

@
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Figure 38.
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Figure 39.

lab image.
Convergence of NN using f9 for the first

regions shown in white in figure 20 are classified as

objects. The f9 values of these regions are between 0
and 1.6.

The NN performance for all the pixels in the

rectangular regions in figure 2 is summarized in ta-

ble 3. The rectangular regions in figure 2 contain

92615 wall pixels, 27708 table pixels, and 8456 ob-

ject pixels. From the table it may be seen that 98% of

Table 3. Correct classification using f9 for all pixels

of the first lab image

W T O U

W 90817 1200 195 403

T 2071 24152 335 1150

O 656 1923 5364 513

the wall pixels, 87.2% of the table pixels and 63.4%

of the object pixels were classified correctly.

4.2 Generalization

To evaluate the ability of the NN to classify pixels
of another image in the sequence, the f9 value of each

pixel in the 80th image was input to the trained NN.

The resulting segmentation is shown in figure 41. By

comparing figure 41 to figure 40, it may be seen that the

NN trained on the first image results in a meaningful

segmentation of the 80th image in the sequence. This

Figure 40. First lab image segmentation with NN using
f9.

Figure 41. 80th lab image segmentation with NN using
f9.
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exampleillustratestheabilityof theNN, usingscalar
texturefeatures,to generalizeto otherimagesin the
sequence.As the camera is brought closer to scene,

the texture properties of the objects in the scene may

change and therefore, the NN will have to be re-trained

beyond a certain number of images.

4.3 Performance with Single Inputs

As described above for f9, NNs with one node in

the input layer, four nodes in the hidden layer and three

nodes in the output layer were trained with f4, fl 0, fl 1,

and fl 2 to classify every pixel of the image in figure 1

as wall, table, or object pixel. The performance of the
NNs for the rectangular regions in figure 2 is sum-
marized in table 4. Table 4 shows that classification

Table 4. Classification of first lab image regions using
different scalar features

Features W T O

f4 97.4% 71% 71.2%

f9 98% 87.2% 63.4%

fl0 98.3% 89_8% 75.4%

fl 1 97.8% 79.5% 55.6%

f12 99% 56.9% 70.5%

performance with fl0 is better than with f4, 19, fll,

and fl 2 for the image in figure I. All the features are

good for classification of wall pixels. The scalar fea-

tures fl 1 and fl 2 are not good discriminants for object

and table pixels, respectively. The ability of differ-

ent scalar features to separate the various categories in
an image varies as shown in table 4 therefore, it may

be possible to use several scalar features together to

achieve a better image segmentation. We explore this
idea next.

4.4 Training with Multiple Inputs

ANN with five nodes in the input layer, four

nodes in the hidden layer, and three nodes in the out-

put layer was trained with the normalized values of

f4, 19, fl0, fll, and f12 using back propagation for

classification of the pixels in figure 1 into wall, table,

and object pixels. For normalization, the value of the

scalar feature at every pixel in the image was divided

by the maximum value of that scalar feature in the

image. This makes the NN unbiased to a particular

scalar feature. To train the NN, 80 samples from the

wall, 80 samples from the table, and 80 samples from

the objects were randomly chosen from the rectangular

regions in figure 2. The 39 weights of the NN con-
verged in 209 cycles. The convergence characteristics

of the NN are shown in figure 42. In figure 42, E

is the fit error, and PCC is the probability of correct
classification.

For performance evaluation of the trained NN for

pixels in figure 2, f4, t9, fl0, fl l, and fl2 values for

each pixel in figure 1 were input to the trained NN

for classification into wall, table, object, or unknown

categories. The resulting segmentation is shown in
figure 43. For the rectangular regions in figure 2, the

segmentation in figure 43 shows that 98.3% of the wall

pixels, 89.9% of the table pixels, and 93.3% of the

object pixels were classified correctly. On comparing

these with those in table 4, it may be seen that the

NN using the five scalar features generally performs

better than the NNs using a single scalar feature. Most

of the improvement results from increased accuracy in

classifying object pixels.

,_PCC l

i

¢1 i

O

0 60 100 1150 200 I_80

NO. Of Cyclel

Figure 42. Convergence of NN using f4, 19, fl0, fl 1,

and f12 for the first lab image.
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Figure43. FirstlabimagesegmentationwithNNusing
f4, f9, fl0, fll, andf12.

4.5 Generalization with Multiple Inputs

Segmentation result of the 80th image with the

NN trained on the first image is shown in figure 44.

It is interesting to see that the wire is classified as an

object in this image compared to it being classified as

table in figure 41. By comparing figure 44 to figure 41,
it can be said that the classification in figure 44 is

superior to that in figure 41.

4.6 Single Input Training for UMASS Image

In order to examine if the five scalar features dis-

cussed above would work for other images, NNs were

trained using a single scalar feature and the five fea-

tures together to classify regions in the image in fig-

ure 33 as mountain, ground, and sky regions. For indi-

vidual scalar features, NNs with one node in the input
layer, four nodes in the hidden layer, and three nodes

in the output layer were used. For training, value of

the scalar features for 120 points from the mountain,

I20 points from the ground, and 120 points from the

sky were used. The performance of the NNs with dif-

ferent scalar features was evaluated on how many of

the 14441 mountain pixels, 55524 ground pixels, and

99376 sky pixels were classified correctly. Both for

training and for performance evaluation, pixels were

chosen from the rectangular regions with legends S,

M, and G, shown in figure 45. In this figure, regions
from the sky, mountain, and the ground are marked

with labels S, M, and G, respectively. Table 5 sum-
marizes the results for the five scalar features. From

Figure 44. 80th lab image segmentation with NN using
f4, f9, fl0, fll, and f12.

Figure 45. Sky, mountain, and ground regions in the

UMASS image.
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Table5. Classificationof UMASS image regions using
different scalar features

Feature M G S

f4 91.5% 67.5% 87.1%

f9 96.2% 66% 86.4%

fl0 97% 68.1% 89.1%

fl 1 98.1% 64.4% 89.6%
f12 99% 65% 90.6%

table 4, it may be seen that classification of the ground

pixels improves considerably. The classification of the

mountain and sky pixels is comparable to that achieved

by a single scalar feature. The segmentation achieved

by the classification of every pixel in figure 33 by the

NN is shown in figure 47.

4.8 Performance with Discarded Features

the table it may be seen that the five scalar features

perform similarly. The performace of fl 2 is somewhat
better than others.

4.7 Multiple Input Training for UMASS Image

ANN with five nodes in the input layer, four

nodes in the hidden layer, and three nodes in the out-

put layer was trained on the normalized values of f4,

f9, fl0, fl 1, and f12 using back propagation to classify

every pixel of the image in figure 33 into mountain,

ground, or sky pixel. The 39 weights of this NN con-

verged in 700 cycles. The convergence characteristics
of the NN is shown in figure 46. The converged NN

classified 98.1% of the 14441 mountain pixels, 89.1%

of the 55524 ground pixels, and 89.4% of the 99376

sky pixels. By comparing these numbers to those in

So far we have not considered the other five scalar

features namely, fl, f2, f3, f5, and f13, together. Dur-

ing the feature selection process we had discarded these

scalar features based on their inability to segment the

images in figure 1 and figure 33 into the desired re-
gions. To evaluate if they are useful together, a NN

with five nodes in the input layer, four nodes in the

hidden layer, and three nodes in the output layer was
trained on the normalized values of fl, f2, f3, f5, and

f13 using back propagation to classify every pixel of

the image in figure 1 as wall, table, or object pixel.

The 39 weights of this NN converged in 435 cycles.

The convergence characteristics of the NN is shown
in figure 48 and the resulting segmentation is shown

in figure 49. The trained NN classified 98% of the

wall pixels, 90% of the table pixels, and 99.6% of the

object pixels correctly. The classification performance

_._PCC ..................................................

0

o

0 1_00 400 600 lO0 1000

No. off Cyol_=

Figure 46. Convergence of NN using f4, f9, fl0, fl 1,

and fl 2 for the UMASS image.

Figure 47. UMASS image segmentation with NN us-

ing f4, f9, fl0, fl 1, and fl 2.

18



c;

o

o 200 4o0 6oo

No. o_' (_y_l _ zi

Figure 48. Convergence of NN using fl, f2, f3, f5,

and f13 for the first lab image.
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Figure 50. 80th lab image segmentation with NN using
fl, f2, f3, f5, and fl 3.

is comparable to that achieved by using the scalar fea-

tures f4, f9, fl0, fll, and f12 together where, 98.3% of

the wall pixels, 89.9% of the table pixels, and 93.3%

of the object pixels were correctly classified. The clas-

sification performance on the 80th image is shown in

figure 50. This result is also comparable to that shown
in figure 44.

The same NN was trained using the fl, f2, f3, f5,

and f13 values corresponding to the sample pixels in

figure 33. It took 346 cycles to train the NN. The con-
vergence characteristic and the segmentation are shown

in figures 51 and 52. In this case 95% of the mountain

pixels, 97% of the ground pixels, and 65% of the sky

pixels were classified correctly. This is not as good
as the correct classification of 98.1% of the mountain

pixels, 89.1% of the ground pixels, and 89.4% of the

sky pixels, achieved by using f4, f9, fl0, fl 1, and fl 2

together.

In summary, NNs using the five scalar features f4,

f9, fl 0, fl 1, and fl 2 together and fl, f2, f3, f5, and fl 3

together were trainable for successful classification of
the pixels of the images in figures 1 and 33. In both

the cases, NNs using the five scalar features together

did a better classification when compared to the NNs

using a single scalar feature.

Figure 49. First lab image segmentation with NN using
fl, f2, f3, f5, and fl 3.
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Convergence of NN using fl, f2, t3, f5,

and fl 3 for the UMASS image.

Figure 52. UMASS image segmentation with NN us-

ing fl, f2, 13, f5, and fl 3.

5 CONCLUSIONS

Image segmentations using thresholds derived from

histograms of the ten scalar features were described for

a laboratory image and an outdoor scene. These scalar

features are derived from the spatial gray-level depen-
dence matrix. It was shown that five of these scalar

features, namely: variance, entropy, difference vari-

ance, difference entropy, and difference average, are
individually good descriptors of texture. A neural net

was then trained using back propagation with a single

scalar feature as input. The performance of the neural

network on the training samples and the convergence
characteristics were discussed. The trained network

was then used for classification of pixels of the whole
image. The resulting segmentation result was shown

and the neural net classification performance was eval-
uated. The same neural net was used for classification

of pixels of another image in the sequence. By this

example, the ability of the trained neural net, using

scalar texture features, to generalize to images in the
sequence was shown. This further verified that the
five scalar features, listed above, are useful for texture

segmentation. A neural net was later trained with the

five scalar features together. Its convergence charac-
teristics were shown. The trained network was then

used for classification of pixels of the whole image.

It was shown that the classification results improved

considerably using five features together as opposed to

using each feature independently. The same network

was trained on the lab and outdoor images using the

five scalar features, energy, contrast, correlation, and
inverse difference moment and mean, which were not

found to be useful individual descriptors of texture.

In this case also the convergence characteristics were

shown for both the images. Generalization to another

image in the sequence was also examined using these

features. It was shown that these features together are

able to correctly classify the image into desired re-

gions. The neural network approach to segmentation
using several texture features shows great promise. In

the future, we will consider methods to adapt the neu-

ral network to improve the generalization. In addition,
we will consider alternate neural network schemes.
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APPENDIX 3. Correlation:

The texture features used in this paper for classi-

fication are based on the spatial gray-level dependence
matrix (SGLDM) (ref. 22). The use of SGLDM to

compute texture features involves large memory and
computation requirements. For example, 256 x 256

locations are needed to store SGLDM for an image

containing 256 gray-levels. The large dimensionality

of the SGLDM makes them sensitive to the sample size

from which they are estimated. An alternate to the use

of SGLDM is to approximate them by sum and dif-
ference histograms. This is based on the observation

that a joint probability function of two variables can be

approximated by the product of two density functions
of uncorrelated transformed variables (ref. 30). This

enables us to compute most of the texture features de-

scribed in reference 22 by using the sum and difference
histograms.

Let p(i,j), ps(k) and pal(I) be the SGLDM, sum

histogram, and the difference histogram, respectively.

The sum and difference histograms are generated by

computing the sum of gray-levels and the difference

of the gray-levels of every horizontal and vertical pixel

pair in the region of interest. The indices (i,j) for the

SGLDM vary from 0-255 while the indices k, 1 for the

sum and difference histogram vary from 0-512 and 0-
255 respectively. Definitions of the 13 texture features

are given below.

1. Energy:

fl = _-_ _-_._(i,j)] 2
i j

-__[p_(k)] 2_Loe(z)]2
k l

2. Contrast:

f2 = _n2_ _-_p(i,j)

n i j

= _ t2pd(t)]

Here, I/-J[ : n where, n varies from 0-255. This is a

weighted sum of the diagonals of the SGLDM where,
n 2 is the weight.

}2i Zj (ij)p(i, j) - f132
f3= f4

= l[_--_.(k - 2f13)2ps(k)- _12pd(l)]
k l

f7 - f2
f7 + f2

4. Variance:

f4 = _ _-_(i- fl3)2p(i,j)
i j

= 1[_( k - 2fla)2p_(k) + _2 Z2pd(Z)]
k l

1

= _(f7 + f2)

5. Inverse Difference Moment:

1

f5 = _ _ 1 + (i - j)2P(i,J)
i j

1

= E 1-_z2pd(z)
l

6. Sum Average:

f6 = _ kp_(k)
k

= 2f13

7. Sum Variance:

YT=_(k-Yr)2p,(k)

8. Sum Entropy:

fS = - _-_ps(k) log_)s(k)]
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9. Entropy: 12.DifferenceAverage:

f9 = - _ _p(i,j) log_o(i, j)]
i j

._ - _-_ps(k) log_os(k)] - _-_Pd(1) lOg_d(/)]
k l

= f8 + fll

10. Difference Variance:

flO = _-_(l- f12)2Pd(l)

11. Difference Entropy:

13. Mean:

f12 = _ IPd(1 )
I

1
f13 = _ _ kps(k)

k

1

: _f6

fll = - _-_Pd(l)log[pd(l)]
l
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